

Program Disclosures

Support for this program is provided by Baxter International Inc.

This program is not an accredited continuing education (CE) program

Today's presentation slides and on-demand viewing of this program will be available by May 15 at: www.NutritionEd.baxter.com

Faculty

Elisabeth De Waele, MD, PhD
Head of Clinics President of the Nutrition Team
Critical Care Physician and Surgeon Free University Hospital
Brussels, Belgium

Stephanie Dobak, MS, RD, LDN, CNSC Clinical Dietitian Thomas Jefferson University Hospital Philadelphia, PA USA

USMP/MG235/20-001105/2020 © 2020 Baxter Healthcare Corporation

Disclosures

Elisabeth De Waele

Belgian Government of Health

KCE

Baxter Healthcare

Nutricia

Fresenius Kabi

Stephanie Dobak

No Disclosures

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

Learning Objectives

01

Understand SCCM/ASPEN Covid-19 guidance for ILEs

02

Highlight the value of the Olive Oil-based lipid emulsion in PN prescriptions across the continuum of patient care

03

Explain why olive oil-based lipid could be considered as your standard lipid emulsion

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

SCCM/ASPEN COVID-19 RECOMMENDATIONS

SCCM/ASPEN Guidance for Treatment of COVID-19

Nutrition Therapy in the Patient with COVID-19 Disease Requiring ICU Care

Updated April 1, 2020

Recommendation 5: Formula Selection

If PN is required in the first week of ICU stay during the acute inflammatory phase of COVID-19, **limiting steps should be taken for use of pure soybean lipid emulsions** as outlined in published guidelines.³ This can be accomplished **by withholding soybean lipids or using alternative mixed lipid emulsions**.

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

7

Why Are Lipids Important?

Why Do We Need Lipids?

Fulfill provision of essential fatty acids and components of cell membrane structure and fluidity2

Regulate gene expression²

Provide other non-essential fatty acids important to immune and other biological functions²

Schneider SM. Mediterr J Nutr Metab. 2011;4:87-91;
 Hise M, Brown JC. The ASPEN Adult Nutrition Support Core Curriculum. 2nd Edition, 2012; Silver Springs, MD: American Society for Parenteral and Enteral Nutrition.

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

Biologic Effects of Fatty Acids

	N-6 PUFA	N-3 PUFA	N-9 MUFA
Fatty Acids	Linoleic, arachidonic	DHA, EPA (ALA)	Oleic
Inflammation	Stimulation (1,4,5) and Suppression (2,15)	Suppression (1,5,6,13)	Neutral (1,2)
Cellular immune functions	Suppression (1-3,7,16,17)	Suppression (12,13,16-18)	Neutral (1-3,16)
Oxidation potential (double bonds)	Moderate (2,8-11,14)	High (8,9,11,14)	Low (2,8-11,14)

Fatty Acid Effects are Dose Dependent

Fatty Acid Effects are Class Dependent (PUFA, MUFA, n-6, n-3, n-9)

- Calder PC et al, ICM (2010) 36:735;

- Buenestado A et al. JPEN (2006) 30: 286;
 Granato D et al. JPEN (2000) 24: £13;
 Furukawa K et al. Nutrition (2002) 18:235;
 Mayer K et al., Am J Resp Crit Care Med (2003) 167:1321;
- 6. Caughey GE et al, Am J Clin Nutr (1996) 63: 116;
- Cury-Boaventura MF et al, JPEN (2006) 30: 115;
- 8. Watkins SM et al., J Lip Res (1998) 39: 1583; 9. Fuhrman B et al, Nutr (2006) 22: 922; 10. Goulet 0 et al, AJCN (1999) 70:338; 11. Xu Z et al, JPEN (2016) 40: 672;

- 12. Tull SP et al, PLoSBIOL (2009) 7:e1000177;
- 13. Hecker M et al, Crit Care (2015) 19: 226;

- 14. Bruna E et al, Lipids (1989) 24: 970; 15. Loo LS et al, J Infect Dis (1982) 146: 64; 16. Soyland E et al, Eur J Clin Invest (1993) 23: 112; 17. Calder PC et al, Clin Nutr (1994) 13: 69;
- 18. Miles EA et al, Proc Nutr Soc (1998) 57: 277

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

ω-6 (Soy) PUFAs: **Immunosuppressive Effects**

In vitro and in vivo impairment of

- Lymphocyte proliferation¹
- Lymphokine-activated killer cell generation² and activities¹
- Chemotaxis and phagocytosis of neutrophilic granulocytes³
- Monocyte chemotaxis and phagocytosis⁴

Prolongation of graft survival in an animal transplant model⁵

These effects were dosage dependent^{1,3,4}

- Sedman PC, et al. JPEN J Parenter Enteral Nutr. 1990;14:12-17;
 Sedman PC, et al. Br J Surg. 1991;78:1396-1399;
 Wiernik A, et al. Am J Clin Nutr. 1983;37:256-261;
 Fraser I, et al. Clin Nutr. 1983;2:37-40;
 Grimm H, et al. Transpl Immunol. 1995;3:62-67.

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

ω-9 MUFA: Immune Function Neutral and May Interfere Less with Normal Inflammatory Responses 1,2

Omega-9 fatty acids (i.e., oleic acid within olive oil) influences the metabolic effects of lipids but does not produce eicosanoids1

Studies have demonstrated a reduced lipid peroxidation, immune function impairment, and an inflammatory neutral effect of olive oil-based emulsions1-4

- MUFA=monounsaturated fatty acids.

 1. Pontes-Arruda A. Clin Nutr Suppl. 2009;4:19-23;

 2. Waitzberg DL, et al. JPEN J Parenter Enteral Nutr. 2006;30:351-367;

 3. Calder PC, et al. Intensive Care Med. 2010;36:735-749;
- Reimund JM, et al. Clin Nutr. 2004;23:1324-1332.

Biological and Clinical Aspects of an Olive Oil-based **Lipid Emulsion: Literature Review**

Method

Medline and Embase databases (inception to 15 September 2017) were searched using the terms (parenteral nutrition or PN) AND olive AND (lipid* OR oil* OR emulsion* OR ILE OR ILE)

*Bibliographies of review articles were searched by hand to identify additional relevant articles. Cai W, et al. Nutrients. 2018; 2018; 10(6), 776; https://doi.org/10.3390/nu10060776

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

Characteristics of Olive Oil-based Lipid Emulsions

Immune Function¹

- · Has beneficial effects on immune cell proliferation and function and/or immune cell death
- Appeared to be more neutral in its effect on inflammatory eicosanoid or cytokine production compared with other ILEs

Lipid Peroxidation¹

Was associated with less lipid peroxidation compared with other ILEs, most likely due to its high MUFA and low PUFA content

Hepatobiliary Markers and Plasma Lipid Levels¹

Was not associated with increased hepatobiliary and lipid disturbances

- Group I, soybean oil + medium chain triglycerides; group II, soybean oil + olive oil; group III, soybean oil + olive oil + fish oil

 1. Cai W, et al. Nutrients. 2018;10(6), 776; https://doi.org/10.3390/nu10060776;
- Demirer S, et al. Ann Surg Treat Res. 2016;91(6):309-315.

IV Impact of Soybean Oil and Olive Oil-based Lipid Emulsions on Infections

In a large randomized controlled trial (N=458), olive oil-based PN was clearly associated with fewer infections compared to a soybean oil-based PN.

Adapted from Jia ZY, et al. Nutr J. 2015;14:119:1-15

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

1

What Do the Latest Guidelines Say?

SCCM-ASPEN Clinical Guidelines: Critical Care

SCCM-ASPEN suggests witholding or limiting soybean-based ILE during the first week following initiation of PN in the critically ill patient unless there's concern for essential fatty acid deficiency1

SCCM-ASPEN suggests that alternative ILEs may provide outcome benefit over soy-based ILE1

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

ILEs=injectable lipid emulsions; PN=parenteral nutrition.

1. McClave SA, et al. *JPEN J Parenter Enteral Nutr.* 2016;40:159-211;

2. Vanek VW, et al (ASPEN position paper). *Nutr Clin Pract.* 2012;27:150-192.

"Substitution of an alternative IVFE for PN, particularly an 00-based preparation, may improve outcomes when compared with the more standard SO-based product; however, the committee cannot make a recommendation at this time regarding substituting alternative IVFE sources for SO due to lack of availability on the market of these products in the United States" ...1

ESPEN Guidelines: Parenteral Nutrition

ESPEN guideline on clinical nutrition in the intensive care unit

- The administration of ILEs should be generally a part of PN¹
- Intravenous lipid (including non-nutritional lipid sources) should not exceed 1.5g/kg/day and should be adapted to individual tolerance¹

Lipids are used in PN primarily due to their high caloric content and are thus a good concentrated source of energy, reducing the amount of carbohydrate that needs to be provided as part of the nutrition support²

Lipids provide the building blocks for cell membranes and provide EFAs, thereby preventing EFA deficiency²

LCT=long-chain triglycerides; MCT=medium-chain triglycerides.

1. Singer P, et al. Clin Nutr. 2019;38(1):48-79;

2. Calder PC, et al. Clin Nutr. 2018;37(1):1-18.

Case Based on COVID-19 Experience – Privacy Proof

- Gastric tube was inserted at intubation
- After stabilisation (low dose noradrenaline, low lactate) enteral nutrition was initiated 20ml/h.
- Prokinetics were initiated IV: erythromycin 250mg 2/d and metoclopramide 10mg 3/d

Nutrition COVID

- First choice = enteral
- Start prokinetics
- Start at 20ml/h until target is known
- NO GASTRIC RV
- PN when EN is insufficient or impossible

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

2

Case Based on COVID-19 Experience - Privacy Proof

- Targets were set:
 - Protein 65x1.3g = 85 g
 - · Calories: indirect calorimetry
- To be reached by day 3-4
- Enteral or combined with Supplemental Parenteral Nutrition

USMP/MG235/20-001105/2020 © 2020 Baxter Healthcare Corporation

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

25

Case Based on COVID-19 Experience

3067 kcal/24h ✓ Target 2396 ml/24h is 100ml/h of formula 1.28kcal/ml enteral OR ✓ Target 1535 ml/24h is 64ml/h of formula 2kcal/ml enteral Pump rate was increased

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

Case Based on COVID-19 Experience – Privacy Proof Male patient COVID19 > 60y Respiratory failure – intubated ventilated Day 1 ICU Nutritional therapy Enteral nutrition first Parenteral nutrition second After stabilisation first combined therapy, then enteral only

Case of COVID-19 Critically III Patient Nutritional Management

Take Nutritional Therapy Seriously. Act on What You Preach

ICU dietitian Joy and MD Joop: indirect calorometry on COVID patients

First COVID19 ventilated patient leaves ICU in UZ Brussels

CEO hospital + Nutrition Nurse Lode

USMP/MG235/20-0011 05/2020 © 2020 Baxter Healthcare Corporation

Baxter

Thank you